
Features

- Wide Operating Voltage Range of 2 V to 6V
- Outputs Can Drive Up To 10 LSTTL Loads
- Low Power Consumption, 80- µ A Max I_{CC}
- Typical t_{pd} =20 ns
- ± 4-mA Output Drive at 5V
- Low Input Current of 1µ A Max
- AND-Gated (Enable/Disable) Serial Inputs
- Fully Buffered Clock and Serial Inputs
- Direct Clear


Description/ordering information

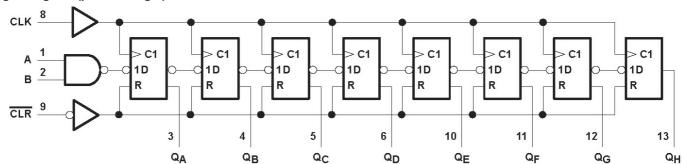
These 8-bit shift registers feature AND-gated serial inputs and an asynchronous clear (CLR) input. The gated serial (A and B) input permit complete control over incoming data; a low at either input inhibits entry of the new data and resets the first flip-flop to the low level at the next clock (CLK) pulse. A high-level input enables the other input, which then determines the state of the first flip-flop. Data at the serial inputs can be changed while CLK is high or low, provided the minimum setup time requirements are met. Clocking occurs on the low-to-high-level transition of CLK.

SR74HC164D (3D VIEW)

ORDERING INFORMATION

T _A	PAC	PACKAGE† ORDERABLE				
·			PARTNUMBER	MARKING		
-40 to 85	SOIC - D	Reel of 2500	SR74HC164D	SR74HC164		

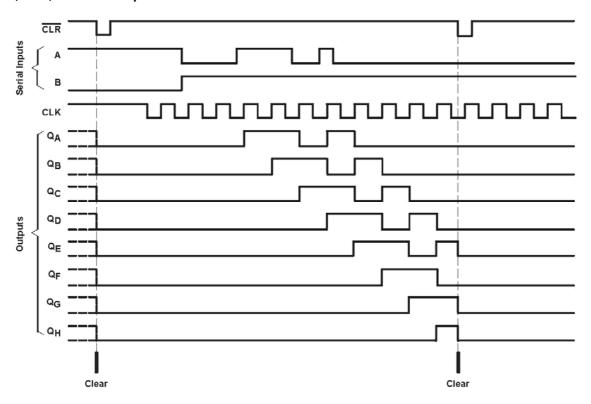
Page: 1/7


FUNCTION TABLE

	INP	UTS	OUTPUTS			
CLR	CLK	Α	В	QA		
L	Х	Х	Х	L	L L	
н	L	X	X	Q _{AO}	Q _{BO} Q _{HO}	
Н	\uparrow	Н	Н	Н	$Q_{An} Q_{Gn}$	
Н	\uparrow	L	X	L	$\mathbf{Q}_{An} \mathbf{Q}_{Gn}$	
Н	↑	X	L	L	$Q_{An} Q_{Gn}$	

 Q_{A0} , Q_{B0} , Q_{H0} = the level of Q_A , Q_B , or Q_H , respectively, before the indicated steady-state input conditions were established

 Q_{An} , Q_{Gn} = the level of Q_A or Q_G before the most recent \uparrow transition of CLK: indicates a 1-bit shift


logic diagram (positive logic)

Pin numbers shown are for the D packages.

Typical clear, shift, and clear sequence

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) †

Supply voltage range, V _{CC} 0.	5 V to	7 V
Input clamp current, I _{IK} (V _I < 0 or V _I >V _{CC}) (see Note 1)	. ± 20r	mΑ
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC}) (see Note 1)	± 20r	mΑ
Continuous output current, I_0 ($V_0 = 0$ to V_{CC})	± 25	mΑ
Continuous current through V _{CC} or GND	± 50ı	mΑ
Package thermal impedance, θ_{JA} (see Note 2): D package	86	/W
Storage temperature range, T stg65	to 15	0

†Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7

Recommended operating conditions (see Note 3)

			SR7	'4HC164I	D	LINUT
			MIN	NOM	MAX	UNIT
V _C C	Supply voltage		2	5	6	V
		V _{CC} =2V	1.5			
V _{IH}	High-level input voltage	V _{CC} =4.5V	3.15			V
		V _{CC} =6V	4.2			
		V _{CC} =2V			0.5	
V _{IL}	Low-level input voltage	V _{CC} =4.5V			1.35	V
		V _{CC} =6V			1.8	
VI	Input voltage		0		Vcc	V
Vo	Output voltage		0		Vcc	V
		V _{CC} =2V			1000	
t / v†	Input transition rise/fall time	V _{CC} =4.5V			500	ns
		V _{CC} =6V			400	
TA	Operating free-air temperature		-40		85	

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report. Implications of Slow or Floating CMOS Inputs, literature number SCBAOO4.

Electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

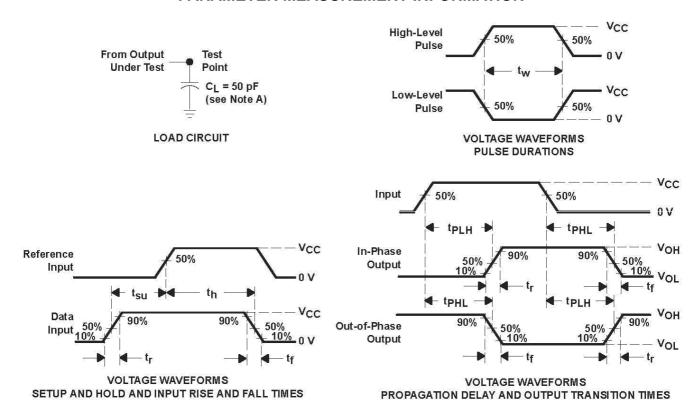
DADAMETED	TEST CONDITIONS		VCC	$T_A = 25$			SR74HC164D		LINIT					
PARAMETER			VCC	MIN	TYP	MAX	MII	I MAX	UNIT					
			2V	1.9	1.998		1.	9						
		I _{OH} = -20 μ A	4.5V	4.4	4.499		4.	4						
V _{OH}	V _I = V _{IH} or V _I L		6V	5.9	5.999		5.	9	V					
		$I_{OH} = -4mA$	4.5V	3.98	4.3		3.8	4						
		$I_{OH} = -5.2 \text{mA}$	6V	5.48	5.8		5.3	4						
	V _I = V _{IH} or V _I L				2V		0.002	0.1		0.1				
		I _{OL} = 20 μ A	4.5V		0.001	0.1		0.1						
V _{OL}			6V		0.001	0.1		0.1	V					
		$I_{OL} = 4mA$	4.5V		0.17	0.26		0.33						
								$I_{OH} = 5.2 \text{mA}$	6V		0.15	0.26		0.33
II	$V_I = V_{CC}$ or 0		6V		± 0.1	± 100		±1000	nA					
Icc	$V_I = V_{CC}$ or 0,	I _O =0	6V			8		80	μΑ					
C _i	-	·	2V to 6V		3	10		10	pF					

[†] If this device is used in the threshold region (from V_{IL} max = 0.5V to V_{IH} min =1.5V), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at t_t =1000ns and V_{CC} = 2V does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

Timing requirements over recommended operating free-air temperature range (unless otherwise noted)

			V	T _A =	=25	SR74HC	164D	LINUT
			VCC	MIN	MAX	MIN	MAX	UNIT
			2V		6		5	
f clock	Clock frequency		4.5V		31		25	MHz
			6V		36		28	
			2V	100		125		
		CLR low	4.5V	20		25		
4	Dulas duration		6V	17		21		ns
t w	Pulse duration	CLK high or low	2V	80		100		
			4.5V	16		20		
			6V	14		18		
		Data	2V	100		125		ns
			4.5V	20		25		
4	Catua tima hafara CLICA		6V	17		21		
t _{su}	Setup time before CLK↑		2V	100		125		
		CLR inactive	4.5V	20		25		
			6V	17		21		
			2V	5		5		ns
t h	Hold time, data after CLK	(↑	4.5V	5		5		
			6V	5		5		

Switching characteristics over recommended operating free-air temperature range, CL = 50pF (unless otherwise noted) (see Figure1)


PARAMETER	FROM	ТО	V		T _A =25	j	SR74H	C164D	UNIT
PARAMETER	(INPUT)	(OUTPUT)	Vcc	MIN	TYP	MAX	MIN	MAX	UNIT
			2V	6	10		5		
f _{max}			4.5V	31	54		25		MHz
			6V	36	62		28		
			2V		140	205		255	
t PHL	CLR	Any Q	4.5V		28	41		51	
			6V		24	35		46	Ns
			2V		115	175		220	INS
t _{pd}	CLK	Any Q	4.5V		23	35		44	
			6V		20	30		38	
			2V		38	75		95	
t t			4.5V		8	15		19	ns
			6V		6	13		16	

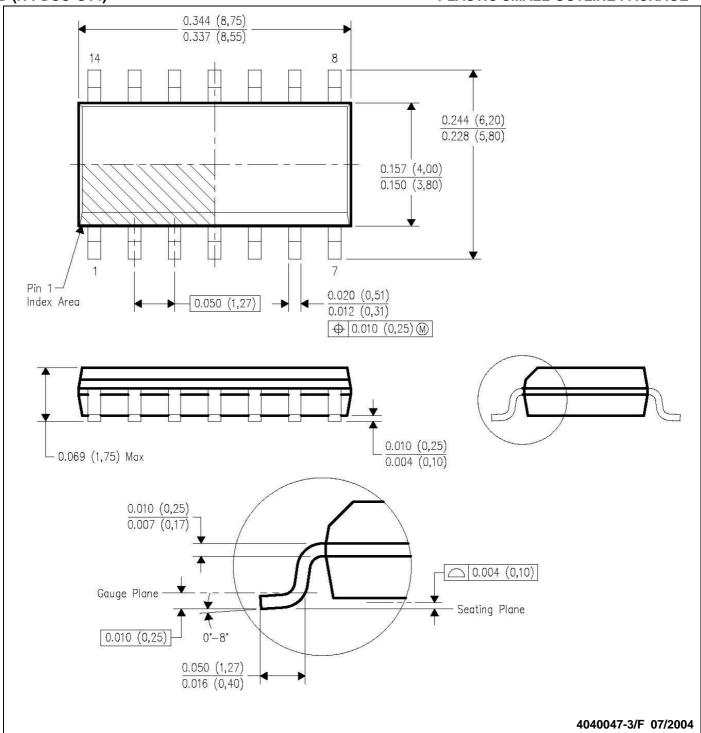
Operating characteristics, $T_A = 25$

	PARAMETER	TESTCONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load	135	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and test-fixture capacitance.

- B. Phase relation ships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR $\,$ 1MHz, $Z_O = 50$ $\,$, $t_r = 6$ ns, $t_f = 6$ ns.
- C. For clock inputs, f_{max} is measured when the input duty cycle is 50%.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. t_{PLH} and t_{PHL} are the same as t_{pd} .


Figure 1. Load Circuit and Voltage Waveforms

MECHANICAL DATA

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
- D. Falls within JEDEC MS-012 variation AB.